464 research outputs found

    Geoneutrinos and reactor antineutrinos at SNO+

    Get PDF
    In the heart of the Creighton Mine near Sudbury (Canada), the SNO+ detector is foreseen to observe almost in equal proportion electron antineutrinos produced by U and Th in the Earth and by nuclear reactors. SNO+ will be the first long baseline experiment to measure a reactor signal dominated by CANDU cores (∼\sim55\% of the total reactor signal), which generally burn natural uranium. Approximately 18\% of the total geoneutrino signal is generated by the U and Th present in the rocks of the Huronian Supergroup-Sudbury Basin: the 60\% uncertainty on the signal produced by this lithologic unit plays a crucial role on the discrimination power on the mantle signal as well as on the geoneutrino spectral shape reconstruction, which can in principle provide a direct measurement of the Th/U ratio in the Earth.Comment: 7 pages including 2 figures and 1 table, in XIV International Conference on Topics in Astroparticle and Underground Physics (TAUP 2015) IOP Publishing , published on Journal of Physics: Conference Series 718 (2016) 06200

    Expected geoneutrino signal at JUNO

    Get PDF
    Constraints on the Earth's composition and on its radiogenic energy budget come from the detection of geoneutrinos. The KamLAND and Borexino experiments recently reported the geoneutrino flux, which reflects the amount and distribution of U and Th inside the Earth. The KamLAND and Borexino experiments recently reported the geoneutrino flux, which reflects the amount and distribution of U and Th inside the Earth. The JUNO neutrino experiment, designed as a 20 kton liquid scintillator detector, will be built in an underground laboratory in South China about 53 km from the Yangjiang and Taishan nuclear power plants. Given the large detector mass and the intense reactor antineutrino flux, JUNO aims to collect high statistics antineutrino signals from reactors but also to address the challenge of discriminating the geoneutrino signal from the reactor background.The predicted geoneutrino signal at JUNO is 39.7 −5.2+6.5^{+6.5}_{-5.2} TNU, based on the existing reference Earth model, with the dominant source of uncertainty coming from the modeling of the compositional variability in the local upper crust that surrounds (out to ∼\sim 500 km) the detector. A special focus is dedicated to the 6{\deg} x 4{\deg} Local Crust surrounding the detector which is estimated to contribute for the 44% of the signal. On the base of a worldwide reference model for reactor antineutrinos, the ratio between reactor antineutrino and geoneutrino signals in the geoneutrino energy window is estimated to be 0.7 considering reactors operating in year 2013 and reaches a value of 8.9 by adding the contribution of the future nuclear power plants. In order to extract useful information about the mantle's composition, a refinement of the abundance and distribution of U and Th in the Local Crust is required, with particular attention to the geochemical characterization of the accessible upper crust.Comment: Slight changes and improvements in the text,22 pages, 4 Figures, 3 Tables. Prog. in Earth and Planet. Sci. (2015

    Regional study of the Archean to Proterozoic crust at the Sudbury Neutrino Observatory (SNO+), Ontario: Predicting the geoneutrino flux

    Full text link
    The SNO+ detector, a new kiloton scale liquid scintillator detector capable of recording geoneutrino events, will define the strength of the Earth radiogenic heat. A detailed 3-D model of the regional crust, centered at SNO+ and based on compiled geological, geophysical and geochemical information, was used to characterize the physical and chemical attributes of crust and assign uncertainties to its structure. Monte Carlo simulations were used to predict the U and Th abundances and uncertainties in crustal lithologies and to model the regional crustal geoneutrino signal originating from the at SNO+

    The Role of Gut Microbiota Biomodulators on Mucosal Immunity and Intestinal Inflammation

    Get PDF
    Alterations of the gut microbiota may cause dysregulated mucosal immune responses leading to the onset of inflammatory bowel diseases (IBD) in genetically susceptible hosts. Restoring immune homeostasis through the normalization of the gut microbiota is now considered a valuable therapeutic approach to treat IBD patients. The customization of microbe-targeted therapies, including antibiotics, prebiotics, live biotherapeutics and faecal microbiota transplantation, is therefore considered to support current therapies in IBD management. In this review, we will discuss recent advancements in the understanding of host-microbe interactions in IBD and the basis to promote homeostatic immune responses through microbe-targeted therapies. By considering gut microbiota dysbiosis as a key feature for the establishment of chronic inflammatory events, in the near future it will be suitable to design new cost-effective, physiologic, and patient-oriented therapeutic strategies for the treatment of IBD that can be applied in a personalized manner

    Influence of Stereochemistry on the Monolayer Characteristics of N-alkanoyl-Substituted Threonine and Serine Amphiphiles at the Air-Water Interface

    Get PDF
    [Image: see text] Thermodynamic and structural properties of the N-alkanoyl-substituted α-amino acids threonine and serine, differing only by one CH(3) group in the head group, are determined and compared. Detailed characterization of the influence of stereochemistry proves that all enantiomers form an oblique monolayer lattice structure whereas the corresponding racemates build orthorhombic lattice structures due to dominating heterochiral interactions, except N-C16-dl-serine-ME as first example of dominating homochiral interactions in a racemic mixture of N-alkanoyl-substituted α-amino acids. In all cases, the liquid expanded–liquid condensed (LE/LC) transition pressure of the racemic mixtures is above that of the corresponding enantiomers. Phase diagrams are proposed. Using the program Hardpack to predict tilt angles and cross-sectional area of the alkyl chains shows reasonable agreement with the experimental grazing incidence X-ray diffraction (GIXD) data

    Nod2 Deficiency in mice is Associated with Microbiota Variation Favouring the Expansion of mucosal CD4+ LAP+ Regulatory Cells

    Get PDF
    Nucleotide-binding Oligomerization Domain-2 (NOD2) mutations are associated with an increased risk to develop Crohn's Disease. In previous studies, we have shown that Nod2-/- mice manifest increased proportion of Lamina Propria (LP) CD4+ LAP+ Foxp3- regulatory cells, when compared with Nod2+/+ mice, while CD4+ Foxp3 + regulatory cells were not affected. Here, we investigated the Nod2 gut microbiota, by 16S rRNA pyrosequencing, at steady state and after TNBS-colitis induction in mice reared separately or in cohousing, correlating the microbial profiles with LP regulatory T cells proportion and tissue cytokines content. We found that enrichment of Rikenella and Alistipes (Rikenellaceae) in Nod2-/- mice at 8 weeks of age reared separately was associated with increased proportion of CD4+ LAP+ Foxp3- cells and less severe TNBS-colitis. In co-housed mice the acquisition of Rickenellaceae by Nod2+/+ mice was associated with increased CD4+ LAP+ Foxp3- proportion and less severe colitis. Severe colitis was associated with enrichment of gram-negative pathobionts (Escherichia and Enterococcus), while less severe colitis with protective bacteria (Barnesiella, Odoribacter and Clostridium IV). Environmental factors acting on genetic background with different outcomes according to their impact on microbiota, predispose in different ways to inflammation. These results open a new scenario for therapeutic attempt to re-establish eubiosis in Inflammatory Bowel Disease patients with NOD2 polymorphisms

    Geoneutrinos from the rock overburden at SNO+

    Get PDF
    SNOLAB is one of the deepest underground laboratory in the world with an overburden of 2092 m. The SNO+ detector is designed to achieve several fundamental physics goals as a low-background experiment, particularly measuring the Earth's geoneutrino flux. Here we evaluate the effect of the 2 km overburden on the predicted crustal geoneutrino signal at SNO+. A refined 3D model of the 50 χ 50 km upper crust surrounding the detector and a full calculation of survival probability are used to model the U and Th geoneutrino signal. Comparing this signal with that obtained by placing SNO+ at sea level, we highlight a 1.4+1.8-0.9 TNU signal difference, corresponding to the ∼5% of the total crustal contribution. Finally, the impact of the additional crust extending from sea level up to ∼300 m was estimated

    Autenticación de aceite de oliva mediante análisis de ADN

    Get PDF
    Olive oil, which has been produced mainly in the Mediterranean area since the ancient times, has a high nutritional value linked to many health benefits. Extra virgin, which is the purest form of olive oil, has excellent quality and premium prices. Many cases of adulteration and fraud necessitate the development of reliable and accurate methods for olive oil authentication. DNA-based methods analyze the residual DNA extracted from olive oil and use molecular markers for genetic identification of different species, subspecies or cultivars because these markers act as signs which reflect distinct genetic profiles. This study reviews the process by which DNA from olive oil is extracted and analyzed by the most recently used markers in the authentication of olive oil, such as Simple Sequence Repeats (SSR) or microsatellites and the single nucleotide polymorphisms (SNPs). Methods of analysis such as qPCR and digital PCR are also discussed with a special emphasis placed on the method of High-Resolution Melting (HRM), a post-polymerase chain reaction method, which enables rapid, high performing identification of genetic variants in the DNA regions of interest without sequencing, and may differentiate very similar cultivars which differ in only one nucleotide in a specific locus.El aceite de oliva, producido principal­mente en el área mediterránea desde la antigüedad, tiene un alto valor nutricional vinculado a muchos benefi­cios para la salud. El aceite de oliva virgen extra, que es la forma más pura de aceite de oliva, tiene una excelente calidad y precios premium. Muchos casos de adulteraciones y fraudes requieren el desarrollo de métodos fiables y precisos para la autenticación del aceite de oliva. Los métodos basados en el ADN analizan el ADN residual extraído del aceite de oliva y usan marcadores moleculares para la identificación genética de diferentes espe­cies, subespecies o cultivares, porque estos marcadores actúan como signos que producen perfiles genéticos distintos. Este estudio revisa el proceso mediante el cual el ADN del aceite de oliva es extraído y analizado por los marcadores utilizados más recientemente en la autenticación del aceite de oliva, como las repeticiones de secuencia simple (SSR) o los micro satélites y los polimorfismos de un solo nucleótido (SNP). Los métodos de análisis como qPCR y PCR digital también se analizan haciendo especial énfasis en el método de fusión de alta resolución (HRM), un método de reacción en cadena posterior a la polimerasa, que permite la identificación rápida y con alto rendimiento de variantes genéticas en regiones del ADN de interés sin secuenciación, y pueden diferenciar cultivares muy similares, que difieren en un solo nucleótido, en un lugar específico

    Perceiving the crust in 3D: a model integrating geological, geochemical, and geophysical data

    Full text link
    Regional characterization of the continental crust has classically been performed through either geologic mapping, geochemical sampling, or geophysical surveys. Rarely are these techniques fully integrated, due to limits of data coverage, quality, and/or incompatible datasets. We combine geologic observations, geochemical sampling, and geophysical surveys to create a coherent 3-D geologic model of a 50 x 50 km upper crustal region surrounding the SNOLAB underground physics laboratory in Canada, which includes the Southern Province, the Superior Province, the Sudbury Structure and the Grenville Front Tectonic Zone. Nine representative aggregate units of exposed lithologies are geologically characterized, geophysically constrained, and probed with 109 rock samples supported by compiled geochemical databases. A detailed study of the lognormal distributions of U and Th abundances and of their correlation permits a bivariate analysis for a robust treatment of the uncertainties. A downloadable 3D numerical model of U and Th distribution defines an average heat production of 1.5−0.7+1.4^{+1.4}_{-0.7}μ\muW/m3^{3}, and predicts a contribution of 7.7−3.0+7.7^{+7.7}_{-3.0}TNU (a Terrestrial Neutrino Unit is one geoneutrino event per 1032^{32} target protons per year) out of a crustal geoneutrino signal of 31.1−4.5+8.0^{+8.0}_{-4.5}TNU. The relatively high local crust geoneutrino signal together with its large variability strongly restrict the SNO+ capability of experimentally discriminating among BSE compositional models of the mantle. Future work to constrain the crustal heat production and the geoneutrino signal at SNO+ will be inefficient without more detailed geophysical characterization of the 3D structure of the heterogeneous Huronian Supergroup, which contributes the largest uncertainty to the calculation.Comment: 25 pages, 9 figures, 6 table
    • …
    corecore